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ABSTRACT - Spectral Mixture Analysis (SMA) is a standard way of analyzing spectral images in terms of 
fundamental components of the scene.  For images in reflected sunlight, much of the image variance is caused by 
lighting variations - shadowing and photometric shading - that is accounted for by using a shade endmember 
located close to the origin in a spectral DN space.  Under control of the lighting and viewing geometry, shade 
mixes with the tangible spectral endmembers such as soil and green vegetation to produce the observed spectral 
radiances.  In many scenes, the landscape is vegetated and shade comprises topographic shading and shadowing 
("hillshade"), which results from unresolved shadows cast by the canopy ("treeshade") and shadows cast by 
elements of the canopy ("leafshade").  Hillshade is commonly estimated using digital elevation models (DEMs) 
and assuming unvegetated surfaces are Lambertian.  Deviations from hillshade include treeshade and leafshade.  
In general, we use LiDAR DEMs with 1-m resolution to model hillshade (“bare earth” or “last arrival”) and 
treeshade ("first arrival” minus bare earth).  In this study of a low-relief forested area in Maryland, USA, we use 
LiDAR to estimate treeshade and SMA to calculate the shade endmember fractions for an ASTER image of the 
same area taken near the same time of year (leaf-on).  The differences between the LiDAR-based model and the 
shade image are used to parse shade into its basic constituents and give the first remote-sensing estimates of the 
relative magnitude of leafshade and treeshade in a forest dominated by deciduous trees.  

 

1  INTRODUCTION  

Images of forested landscapes are dominated by the 
mutual shadowing of trees by their neighbors, and by 
self-shadowing and scattering from leaves within the 
canopy.  By contrast, spectral shape is similar from 
stand to stand.  A large body of work has been devoted 
to forward models of the bidirectional reflectance 
distribution function from canopies in order, 
ultimately, to account for such effects (e.g., Verhoef, 
1984; Franklin et al., 1991; Li et al., 1995; Dymond et 
al., 2001).  Franklin et al., (1991) noted the need for 
improved correction for topographic slopes in forests, 
leading to the SCS model of Gu and Gillespie (1998).  
As emphasized by Strahler (1997), however, the 
problem of inversion to derive biophysical parameters 
(e.g., Hall et al., 1997) from spectral images has not 
been fully solved.  The present study is a step in that 
direction made by associating shade components with 
the canopy features that create them.  

Early in the history of remote sensing, Kauth and 
Thomas (1976) recognized the importance of the 
"point of all shadows" in their data-invariant "tasseled 
cap" transformation, designed to associate physical 
parameters with image channels.  Adams et al. (1986) 
improved on the tasseled cap transformation with data-
dependent spectral mixture modeling (SMA), in which 
the "point of all shadows" was re-introduced as 

“shade,” or darkening due to lighting and canopy 
roughness (i.e., shading and shadowing).  In SMA, the 
corresponding Shade spectral endmember is a radiance 
vector (“Shade” with a capital refers to the specific 
image endmember rather than “shade,” the physical 
scene component).  However, modeling bare surfaces 
with the Shade (Sh) endmember proved to be simpler 
than modeling canopies, for which physical shade 
itself was less well-defined (e.g., Roberts et al., 1993).  
Low-albedo surfaces also can mimic shadowed ones.   

SMA is now a standard processing strategy for 
multispectral and hyperspectral images (Sabol et al., 
2002; Adams and Gillespie, 2006).  For the inverse 
model, "unmixing," Sh and the other spectral 
endmembers are expressed as fraction images, in 
which the contribution of each endmember is 
represented as a fraction of the total radiance for each 
pixel.  In forested scenes, Sh is best regarded as the 
integrated darkening due to topographic shading 
(“hillshade”) plus resolved and unresolved shadows.  
It is also related to shading of sunlit leaves.  However, 
it has proven difficult to separate shade into its 
separate components.  

Unresolved shadows in satellite images arise 
from surface roughness plus trees (“treeshade”), 
together with shadows cast within the canopy by 
leaves (“leafshade”).  Recent advances in high-
resolution LiDAR imaging allow us to independently 
measure DEMs at the meter scale for the canopy.  
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From these DEMs, treeshade can be predicted and 
compared to Sh fraction images, with differences 
attributed to leafshade.  Parsing shade into its 
components is important because it allows us to 
develop a quantitative assessment for how much 
darkening is contributed to spectral images from the 
various sources.  The objective of the present study is 
to split the Sh fraction produced in SMA of satellite 
images into treeshade and leafshade for a low-relief 
scene with nearly constant topographic effects.   

2  BACKGROUND 

2.1  Spectral Mixture Analysis (SMA)  
SMA is discussed at length in Adams and Gillespie 
(2006).  The general equation expressing measured 
spectral radiances L as linear mixtures of fundamental 
spectral components is 

Lj = Σ fk Ej,k + δj m < n+1 (1) 

Lj spectral radiance (Wm-2µm-1sr-1) in image 
channel j  

Ej,k L vector for spectral endmember k in image 
channel j  

fj fraction of spectrum E for endmember k  needed 
to model Lj for a specific pixel  

δϕ unmodeled residual for channel j  
m number of spectral endmembers 
n number of image channels 

Equation 1 is over-determined and may be solved 
by least-squares methods.  Channel residuals δj are 
generally grouped and expressed as a root-mean-
squared value, rms.  For a well-modeled image, rms 
will approach the precision value for the spectral 
radiance data, usually 1-2 DN.  If the set of E is 
thought to describe all the spectral variance of a scene, 
the assumption is generally made that  

Σfj = 1 (2) 

This called the “constrained” model.  If an incomplete 
set of endmembers is desired, an unconstrained model 
not invoking Equation 2 is used instead, and m<n.  

Spectral endmembers are commonly picked from 
images using training areas.  Image-defined endmem-
bers are therefore not “pure” and may contain charac-
teristic mixtures of some or all endmembers in the 
model.  In such cases “overflow” fractions (f<0 or f>1) 
are common.  Such values simply mean that there is 
more or less of Ek in a pixel than in the region used to 
define it.  It is also possible to pick endmembers from 
inspection of the spectral radiance cloud in DN space.  
However they are picked, endmembers should rep-
resent physically meaningful scene constituents that 
commonly mix together, and they must be spectrally 

distinct.  The fraction of Shade, fsh, is temporally 
variable.  For closed-canopy forests, commonly one or 
two endmembers are needed to account for green 
vegetation, and another to account for woody material.  

2.2  Shade fraction (fsh) 
fsh is influenced by many factors, including resolved 
and unresolved shadows down-sun from occulting 
elements of the scene, and shading, or darkening due 
to geometrically reduced illumination (tilted surfaces).  
These occur at all scales in the scene, but it is conven-
ient to consider threshold scales at which spectral 
measurements are made (for ASTER VNIR images, 
this is 15 m/pixel) and at which shadow measurements 
are made (e.g., the 1-m spacing of the LiDAR 
measurements).  At the 1-m scale, the shade fraction 
for low-relief scenes comprises shadows from the 
canopy and leaves, and the integrated shading of the 
sunlit canopy due to local leaf incidence angles.  It 
may be described as a product of S and Λ·(1-a·χ) 
(terms defined below; in the LiDAR data, shadow S is 
either 0 or 1) but this cannot be simply integrated to 
the 15-m ASTER scale because cm-scale leafshade Λ 
is only defined using ASTER (∫(S·(1-a·χ)·Λ)≠ ∫(S·(1-
a·χ))·∫Λ).  Thus, an approximation describing fsh in 
terms of its constituents at the 15-m scale is 

c0+c1fsh ≈ S+(1-S) Λ+(1-(S+(1-S)Λ))·(1-aχ(i)) (3) 

where (1-(S+(1-S)·Λ)) is the Fsh contributed by 
unshadowed, sunlit portion of the 15-m pixel and 
the right-hand side of eqn. 3 excluding the first 
term, S, is leafshade.  

fsh Shade fraction calculated in SMA.  fsh = 1 corres-
ponds to the Shade endmember and fsh = 0 to a 
mixing line or plane defined by the other 
endmembers (such as green vegetation and soil).  

c0, c1 calibration offset and gain factor.  Image-defined 
endmembers may contain a fraction of shade, but fsh 
= 0.0 should correspond to zero shade.  The Shade 
endmember itself is defined as 100% shade.   

S treeshade shadow fraction, integrated to the image 
scale.  Shadows unresolved by the LiDAR are 
included as a component of “leafshade.”  

i the solar incidence angle.  
χ integrated reflectance for the sunlit part of the 

canopy.  For diffuse Lambertian surfaces, χ = cos(i); 
for real canopies scattering is not diffuse.  For 
uniform reflectance, χ = 1, independent of i.  

a relative albedo, the change in fsh caused by 
absorption of light by the surface (e.g., a leaf) 
relative to the albedo of the tangible endmember.  
Albedo is a property of composition, not structure.  

Λ leafshade shadow fraction, defined as shadows from 
unresolved leaves and branches (or by rough surface 
elements in exposed substrate) integrated to the 
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image scale.  Λ is a property of structure, not 
composition.   

3  APPROACH 

We identified a low-relief forested scene for which 
both ASTER and LiDAR images acquired in late 
spring were available.  The ASTER image was ana-
lyzed by conventional SMA; the LiDAR DEM was 
processed to isolate the canopy, from which treeshade 
was calculated and used to calibrate the ASTER fsh.  
Differencing or ratioing fsh and the treeshade image 
will give an image approximating leafshade (Retzlaff 
et al., 2002), but we used the more rigorous equation 
3.  The novel aspects of the approach were combining 
LiDAR and optical imaging to give a new view of a 
fundamental remote-sensing property of tree canopies, 
devising a calibration strategy for fsh, and elaborating 
the mixing model to provide a framework for this new 
analysis.  

 
Figure 1.  ASTER radiance image including study 
area, 15 May 2004 (60 km across; north is up).  Bare 
fields are light; forests and wetlands are dark.  
“Shade Area,” GV, and NPV are locations used to 
select spectral endmember DN vectors; Shade was 
modified as described in the text.  

 

Figure 2.  First-arrival 1-m LiDAR shade image, 2.6 
km across, complemented so that areas of high 
treeshade are dark, as would be seen in an air photo.  
North is up.  Numbers indicate cover classes: 1- bare 
earth and grass (0-1 m), 2 - crops, shrubs, small trees 
(1-5 m), 3 - forest (5-10 m), 4 - forest (10-15 m), 5 - 
forest (15-20 m), 6 - forest (20-25 m), 7 - forest (25-30 
m). 

3.1  Test site 
The test site (Fig. 1, 2) is located 12 km SSE of 
Salisbury, MD (USA) at 38.260ºN, 75.549ºW and 14 
m elevation, on Greenbrier Swamp Road (N-S).  It is 
1.1 km N-S by 2.6 km E-W, and consists of grassy and 
bare fields and deciduous forests of different ages and 
structural stages.  Total surface relief is <9 m, but 
forest canopies are as high as 30 m.  Stands are 
dominated by broadleaf trees such as hickory and oak.  

3.2  Spectral data and SMA 
A largely cloud-free ASTER image (atmospherically 
compensated, land-leaving spectral radiance: AST09), 
was selected for SMA (Fig. 1).  Three VNIR channels 
(0.56, 0.66, and 0.81 µm) were analyzed as linear mix-
tures of Shade (Sh), green vegetation (GV), and woody 
material (NPV).  

The three spectral endmembers were defined 
from the image near the test site (Fig. 1, Table 1).  GV 
was defined by a stand of light, low-shade deciduous 
trees.  NPV was defined by a bare field.  Sh was 
approximated by the darkest non-water pixels in the 
image, but the definition was refined (and DN values 
lowered) according to the intersection of mixing lines 
in the data (DN) space because the image-defined Sh 
did not lie on the mixing line to NPV.  Nevertheless, 
the Sh endmember DN values were all well above 
zero.  Non-zero Sh values arise due to uncompensated 
atmospheric path radiance, light scattered into 
shadows by adjacent scene elements, and/or 
measurement bias.  

ASTER 
Channel 

Sh 
(DN) 

GV 
(DN) 

NPV 
(DN) 

1 51 78 173 

2 27 37 146 

3 30 134 110 

Table 1.  Endmember spectra: Green vegetation (GV; 
non-photosynthetic vegetation (NPV); and Shade (Sh).  

3.3  High-resolution measurement of topography 
LiDAR images of the test area were from a dataset 
acquired by the State of Maryland’s Department of 
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Natural Resources between June and July of 2003.1  
First-return LiDAR "point-cloud" postings were <1 m, 
and vertical resolution was 14.3 cm.  At this fine scale, 
different types of trees may be recognized by shape.  

3.4  Calculation of S  

Canopy shadow and shading images S and S·χ were 
calculated from the 1st-arrival LiDAR data with 
ArcInfo and ERDAS Imagine, respectively.  The 1st-
arrival and canopy DEMs were similar.  Last-return 
data yielded sparse information in homogeneous areas 
of the topographically subtle terrain and gridded data 
were created from a triangulated irregular network.  
Figure 2 shows the full-resolution LiDAR shade image 
from which 1-m/pixel images of S and S·χ were 
calculated.  

The 1-m LiDAR shade data are at too fine a scale 
for direct comparison to the 15-m ASTER fsh image.  
Therefore, they were low-pass filtered with a 15x15 m 
equal-weight kernel and resampled to 15-m resolution.  

3.5  Calibration of fsh 

The shade found from SMA is relative to the amount 
in the image-defined endmembers.  Actual shade in 
the endmembers GV and NPV may be nonzero and 
different (Fig. 3).  Therefore comparison to LiDAR-
derived shade requires calibration, which can be 
achieved if different areas differ only in their amount 
of LiDAR-determined S. Linear regression of S onto 
fsh yields c0 directly (the intercept), and the slope is 

∆S/∆fsh = c1/(a·χ·(1 - Λ)) (4) 

In this study, observation leads us to estimate that 
χ = 1, a is known and constant, and Λ is unknown 
but constant among nearby forest stands of units 5-7 
(GV>>NPV) as defined in Figure 2.  Therefore, Eqn 4 
contains two unknowns (c1, Λ) which may be found if 
two or more pairs of fsh and S have been measured.   

Because χ, a, and Λ may all differ among tangible 
endmembers (i.e., excluding Sh) a different calibration 
may be necessary for each endmember (Fig. 3).  This 
reflects the fact that S may differ among image-
defined tangible endmembers.  In this study we 
calibrated only along the GV – Sh mixing line, because 
roughness in bare fields was < 1 m/pixel so S = 0.  

3.6  Calculation of leafshade 

In calibration, Λ was assumed to be constant for selec-
ted stands.  In general, however, this assumption may 
not be true, and the goal of the research was to find 
leafshade across the image, using Eqn 3 with fsh and S 
as input.  Isolating Λ requires that a is known, and 

                                                 
1 Maryland Department of Natural Resources, Annapolis, 
Maryland: http://dnrweb.dnr.state.md.us/gis/data/lidar/ 

with the data at hand it can only be estimated: e.g., for 
deciduous tree leaves, a≈0.23 according to the ASTER 
Spectral Library (http://speclib.jpl.nasa.gov).  This value 
is <0.02 greater than for conifer needles, but may be 
different for NPV and soils.  In principle, we can 
measure typical values of a for different stands if we 
know function χ since we can determine i from DEMs, 
but for forest stands we assumed χ=1, recognizing this 
too as an approximation (e.g., Li et al., 1995).  We 
nevertheless calculated a shading image for χ=cos(i) 
for comparison with the other derived image products.  
Although χ can be calculated directly from the LiDAR 
DEM, we estimated it from the derived shade image, 
interpolating across areas of shadow.  

 
Figure 3 = Schematic mixing diagram for the ASTER 
channel 3 (NIR) vs. 2 (R) plane, illustrating calib-
ration.  Image-defined endmembers for shade, green 
vegetation, and non-photosynthetic vegetation are 
indicated by Sh, GV, and NPV.  The mixing plane is 
shaded dark gray and shows isolines for fsh=0 (no 
shade), 0.2, 0.4, 0.6, and 0.8; fsh=1 (full shade) plots 
at Sh.  Isolines for NPV (but not GV) are also shown.  
Shaded GV plots along the GV-Sh line; mixtures of GV 
and NPV plot along the f=0 line.  Ternary mixtures of 
GV, NPV and Sh plot within the dark shaded triangle, 
and mixtures with less shade (fsh<0) than the endmem-
bers GV and NPV plot beyond the fsh=0 isoline.  After 
calibration of the fsh image, positions of GV and NPV 
endmembers with no shadows can be plotted on their 
respective mixing lines with Sh (GV’ & NPV’).  For 
these points, leafshade is unchanged.  Mixing now 
occurs in the (Sh, GV’, NPV’) triangle shaded inter-
mediate gray, and the isolines for fsh may be discord-
ant with the ones in the (Sh, GV, NPV) triangle.  All 
image data will now plot within the new triangle (no 
negative Sh fractions).  Further extrapolation to GV’’ 
and NPV’’ gives virtual endmember positions assum-
ing that leafshade is zero, as might occur looking 
directly down-sun (zero phase angle).  However, GV 
and NPV may have different albedoes (here aNPV>aGV) 
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such that the vector Sh-GV’’ is shorter than the vector 
Sh-NPV: the difference is a measure of the difference 
in albedo (δa), and GV’’’ is the position GV at zero 
phase-angle would have if aNPV=aGV.  The arc shows 
the locus of a vector rotated about Sh.  

 
Figure 4.  Individually stretched shade fraction 
images at 15-m resolutions: high-shade areas are 
light.  a) ASTER Shade from SMA (fsh).  The rms value 
for the unmixing model was <0.5 DN, close to the 
precision level of the data.  b) LiDAR treeshade 
(S+(1-S)·(1-cos(i)).  c) LiDAR shadow (S).  d) LiDAR 
shading (1-cos(i)).  In calculating Λ, we assumed χ=1.  

 

4  RESULTS AND DISCUSSION 

The scattergram for fsh vs. S (not shown) displays an 
overall lack of correlation, but for three forest sites 
within map unit 5, fsh and S are linearly related.  Calib-
ration with these data yielded c0 = -0.66, c1 = 2.575, 
and Λ=0.77.  These results allowed the quantitative 
comparison of ASTER and LiDAR data, shown in 
Figure 4.  In particular, using equation 2 and calibrated 
fsh and S images (Figs. 4a,c), we were able to calculate 
the leafshade (Λ) image shown in Figure 5.  The 
Λ image has lower variability than its precursor 
images.  It contains different information than fsh, and 
appears to relate more directly to species and 
community type, whereas S is controlled strongly by 
stand age or structural stage.  However, the strongest 
pattern appears to be related to unit boundaries 
between stands, with the 15-20 m trees appearing to 
have higher amounts of Λ than taller or shorter ones.  
Thus, Λ is not related strictly to canopy height.  It will 
require field evaluation to sort this out, but we have 
not yet conducted a field validation of the Λ images.  

 
Figure 5.  Leafshade Λ image.   a) Calculated using 
eqn. 2.  b) Approximated as fsh/treeshade.  

Figure 6b presents a simplified version of a Λ 
image.  The variance is greater than for Figure 6a, 
probably because not as much treeshade was removed.  
This possibility is strengthened by the added detail in 
the tallest canopies which have the greatest potential 
for shadowing.  However, calculation is simpler and 
such products may find practical application.  

Hillshade correction was not addressed in this 
study, but is a common feature of forests and must be 
dealt with if parsing shade is to have practical use.  Gu 
and Gillespie (1998) pointed out that in forests slopes 
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affected shadowing by uphill or downhill trees.  How-
ever, slope also affects χ because shadows are near the 
principal plane, changing the shading integrated 
azimuthally.  Because of this, it is unlikely that 
conventional Lambertian correction for slopes will be 
effective tool in isolating leafshade in hilly terrain.  

 

 

 
Figure 6.  a) GV.  b) GV/(1-fsh). c) GV/(1-Treeshade).  

Reduction of the albedo-Sh ambiguity was not 
addressed in this study, but is an important problem 
that must be dealt with to maximize the value of 
leafshade analysis.  In the framework of this paper, it is 
grouped together with χ in Eqn 3 and cannot be 
separated.  However, Figure 3 hints at the possibility of 
identifying relative albedo differences from end-
member to endmember, with the possibility that 
knowing the albedo for a single endmember would 
suffice to determine albedo for all.  

5  CONCLUSIONS 

Remotely sensed spectral images integrate the effects 
of lighting up to the pixel scale.  Blending contribut-
ions from topography, canopies, and leaves and 
branches.  Hybrid analysis of spectral and LiDAR 
images can be used to separate contributions from 
shadows at the tree and stand scales from shading and 
shadowing at sub-tree scales, and spectral mixture 
models can be calibrated so that spectral shade frac-
tions (fsh) correspond to more direct measurements 
from LiDAR.  For a deciduous forest in coastal 
Maryland, viewed in late morning during late spring, 
leafshade was typically ~0.7; treeshade was ~0.3-0.8.  
Future analysis is necessary to account for topographic 
shading and shadowing, to incorporate a more accurate 
photometric function χ, and to separate darkening due 
to albedo a on a pixel-by-pixel basis.  
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